Autogenous and Allogenic Stem Cell Usage in Foot and Ankle Fusions

Bradly W. Bussewitz, DPM, AACFAS
Christopher F. Hyer, DPM, FACFAS

Advanced Orthopedic Foot & Ankle Fellowship
Orthopedic Foot & Ankle Center, Columbus

OhioHealth
Columbus, Ohio
www.orthofootankle.com
Disclosure

Autogenous and Allogenic Stem Cell Usage in Foot and Ankle Fusions

Bradly W. Bussewitz, DPM, AACFAS

Our disclosures are in the Final AOFAS Program Book. There are no potential conflicts with this presentation.
Introduction

• Intimate details of pathways for fracture healing and bone fusion at forefront of research

• Achieving bone fusion is multifactorial:
 • Surgical technique/fixation
 • Patient physiology/co-morbidities
 • Effect of drugs and toxins (smoking)
 • Weight-bearing forces
Introduction

- Patient innate healing response or capacity cannot be underestimated.

- Many studies have demonstrated negative healing effects of\(^1-^6\):
 - Poorly controlled diabetes
 - Malnutrition
 - Vitamin D/calcium deficiency
 - Smoking
Mesenchymal Stem Cells (MSCs)

- Originate in many tissues, including fat and bone marrow
- Differentiate into osteoprogenitor cells
 - Contains the three entities that necessitate bone healing: osteoconduction, osteoinduction and osteogenic cells
- No recipient rejection; perfect compatibility

Negatives:
- Limited volume available
- Harvest site morbidity (particularly from crest)
Exogenous Grafts

• May be able to attain autograft equivalency when osteogenic cells and inductive proteins are combined

• May be preferable over autograft due to:
 • Harvest site morbidity
 • Inadequate volume/quantity
 • Increased costs via increased procedure codes and operating time
 • Treatment of complications from harvest site including fracture, hemorrhage, pain, nerve or arterial injury, or cosmetic disturbance8-11
Indications and Contraindications

Treatment algorithm calls for BMA supplementation for all foot and ankle fusions deemed ‘at risk’ for nonunion:

- **Patient specific**
 - Tobacco history
 - Obesity
 - Diabetes
 - Immunosuppressed
 - History of prior nonunion

- **Surgery specific**
 - Fusion of tarsometatarsal, naviculocuneiform, subtalar, talonavicular or ankle joints
Allograft & BMA

- Two commercial off-the-shelf allografts available:
 - Osteocel-Plus® (NuVasive, San Diego, CA)
 - Trinity Evolution® (Orthofix, Lewisville, TX)
- Both offer an osteoconductive, osteoinductive, and osteogenic option reported to supply MSCs in a concentrated dose.
Technique

- BMA harvest performed prior to tourniquet inflation
- 12-gauge Jamshidi needle inserted into lateral wall of calcaneus or medial distal tibia using a reported technique\(^\text{15}\)
- 5-20 mL aspirate is withdrawn
- Reorienting the needle for every 2-5 mL of aspirate is recommended to enhance the quality\(^\text{16}\)
- Senior authors’ method is to soak the allograft in BMA prior to implantation
- The BMA can be spun in a centrifuge to concentrate the osteoblastic potential of the aspirate, or used as a straight aspirate

Bone marrow aspirate harvest is performed using an aspirate needle inserted into the lateral wall of the calcaneus
Complications

• BMA harvest for use in lower extremity has been demonstrated to be safe and minimally invasive\(^\text{17}\)

• Multicenter, multi-surgeon retrospective study
 • 548 patients in 5 anatomic locations:
 • Proximal and distal medial tibial metaphysis
 • Medial malleolus
 • Medial and lateral calcaneus
Discussion

• Study by Hernigou et al.18
 • 60 noninfected atrophic tibial nonunions
 • 20 ML of concentrated BMA aided in healing 53 of 60
 • 7 failures had significantly fewer osteoprogenitor cells
 • Positive correlation between number of fibroblast colony-forming units and volume of mineralized callus at 4 months
 • Negative correlation between time needed to obtain union and concentration of fibroblast colony-forming units injected
Discussion

- Study by Connolly et al.19
 - BMA injected directly into 20 tibial nonunions
 - 18 of 20 healed at an average of 6 months
- Healy showed clinical effectiveness when treating nonunions with BMA in cancer patients20
- Hernigou and Connolly studies show that BMA can be useful in tibial nonunions and appears to be dose-dependent with a minimal number of cells present to show effects
Discussion

- No level 1 studies of BMA and/or MSC products to augment bone fusion currently exist.
- Benefits are based on educated theory combined with limited clinical usage and lower levels of evidence studies.
- Utilization of these products does not guarantee fusion.
- MSCs do not replace proper surgical technique but offer potential enhancement of the technique success.

Nonunion STJ

Revision STJ fusion with stem cell allograft and BMA
References

THANK YOU